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Abstract. Based on theory and experiments in weakly interacting electron systems, it was believed for
many years that no metallic phase is possible in two dimensions. The unexpected observation of metallic-
like behavior in strongly interacting electron systems has thus drawn considerable attention. Following
background material and a brief history, we review the dramatic response of these 2D systems to in-plane
magnetic fields, and the evidence this provides for a possible quantum phase transition.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions — 73.40.Qv
Metal-insulator-semiconductor structures (including semiconductor-to-insulator) — 73.50.Jt
Galvanomagnetic and other magnetotransport effects (including thermomagnetic effects)

For nearly two decades it was believed that in the absence
of an external magnetic field (B = 0) all two-dimensional
systems of electrons are insulators in the limit of zero tem-
perature. Based on a scaling theory for non-interacting
electrons [1], these expectations were further supported
by theoretical work for weakly interacting electrons [2].

Confirmation of insulating behavior of two-
dimensional systems of electrons in zero field was
provided by a beautiful series of experiments in thin
metallic films [3] and silicon MOSFETs (metal-oxide-
semiconductor field-effect transistors) [4,5], where the
conductivity was shown to display weak logarithmic
corrections presumably leading to infinite resistivity in
the limit of zero temperature. However, with the advent
of higher mobility lower disorder samples which allowed
access to very low electron densities, experiments in
dilute silicon MOSFETSs suggested that a transition
from insulating to conducting behavior occurs with
increasing electron density at a very low critical density,
ne ~ 101 em™2 [6]. First viewed with considerable
skepticism, the finding was soon confirmed for silicon
metal-oxide-semiconductor MOSFETSs fabricated in other
laboratories [7], and then for other materials, including
p-type SiGe structures [8] and AlAs/AlGaAs heterostruc-
tures [9], and n-type AlAs [10] and GaAs/AlGaAs
heterostructures [11] (for a complete set of references, see
review [12,13]).

It was soon realized that the low electron (or hole) den-
sities for which these observations were made correspond
to a regime where the energy of the repulsive Coulomb in-
teractions between the electrons exceeds the Fermi energy
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by an order of magnitude or more. For example, at an
electron density n, = 10! cm~? in silicon MOSFETs, the
Coulomb repulsion energy, U, ~ e?(mn,)'/? /e, is about
10 meV while the Fermi energy, Er = mngsh?/2m*, is only
0.55 meV. (Here e is the electronic charge, € is the dielec-
tric constant, and m* is the effective mass of the electron.)
Rather than being a small perturbation, interactions in-
stead provide the dominant energy in these very dilute
systems.

The resistivity of a high-mobility (low disorder) sili-
con MOSFET is shown at several fixed temperatures as a
function of electron density in Figure la. There is a well
defined crossing at a “critical” electron density, n., be-
low which the resistivity increases as the temperature is
decreased, and above which the reverse is true. This can
be seen more clearly in Figure 1b where the resistivity is
plotted as a function of temperature for various fixed elec-
tron densities. A resistivity that increases with decreasing
temperature generally signals an approach to infinite resis-
tance at T' = 0, that is, to insulating behavior; a resistivity
that decreases as the temperature is lowered is character-
istic of a metal where the resistivity tends to a finite value
(or a superconductor or perfect conductor if the resistivity
tends to zero). Similar behavior was subsequently found
in other materials at critical densities determined by ma-
terial parameters such as effective masses and dielectric
constants. The value of the resistivity at the transition
(the “critical resistivity” p.) in all cases is on the order of
h/€2, the quantum unit of resistivity.

The electrons’ spins play an important role in these
low-density materials, as demonstrated by the dramatic
response to a magnetic field applied parallel to the plane
of the two-dimensional system. We note that an in-plane
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Fig. 1. (a) Resistivity as a function of electron density for the
two-dimensional system of electrons in a high-mobility silicon
MOSFET. The different curves correspond to different tem-
peratures. Note that at low densities the resistivity increases
with decreasing temperature (insulating behavior), while the
reverse is true for higher densities (metallic behavior). (b) Re-
sistivity as a function of temperature for the two-dimensional
system of electrons in a silicon MOSFET. Different curves are
for different electron densities.

magnetic field couples only to the electron spins and does
not affect their orbital motion. The parallel-field magne-
toresistance is shown for a silicon MOSFET in Figure 2 for
electron densities spanning the density n. at a tempera-
ture of 0.3 K. The resistivity increases by more than an or-
der of magnitude with increasing field, saturating to a new
value in fields above 2 or 3 tesla [14,15]. The total change
in resistance is larger at lower temperatures and for higher
mobility samples, reaching many orders of magnitude at
very low temperatures for densities near n.. Measurements
of Shubnikov-de Haas oscillations have established that
the saturation of the resistivity corresponds at high elec-
tron densities to full polarization of the spins [16,17]. As
the density is reduced toward n., however, disorder and
tail states play an increasingly important role [18]).
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Fig. 2. For different electron densities, the resistivity at
0.3 Kelvin is plotted as a function of magnetic field applied
parallel to the plane of the two-dimensional system of electrons
in a silicon MOSFET. The top three curves are insulating while
the lower curves are metallic in the absence of a magnetic field.

There has been much debate regarding whether the
physics of strongly interacting electrons can be explained
by extending Fermi liquid theory, or whether the unusual
behavior of dilute two-dimensional electron systems sig-
nals new phenomena and perhaps new phases. Working
within Fermi liquid theory, Zala et al. [19] have recently
shown that strong interactions have a pronounced effect
and can account for the behavior of dilute systems for den-
sities down to about 1.5n. in a restricted range of tem-
perature. However, the theory is not applicable at lower
densities approaching n.. In the remainder of this paper,
we review recent magnetoconductance data obtained for
silicon MOSFETSs that indicate that the magnetic suscep-
tibility diverges at a finite density ng near or equal to n.,
and that the divergence of the susceptibility is due to an
increase of the effective mass, while the g-factor remains
essentially constant. We suggest that these results provide
evidence that the system approaches a zero-temperature
quantum phase transition.

There have been many attempts to obtain a quanti-
tative measure of the strength of the response of dilute
2D systems to an external field applied parallel to the
electron plane. Attempts to scale the magnetoresistance
curves at different densities and temperatures have gen-
erally yielded a collapse onto a single curve at either low
or high magnetic field; over a wide range of temperatures
but only at the metal-insulator transition; or in a wide
range of carrier densities, but only in the limit of very
low temperatures. Two different scaling procedures have
recently been applied successfully; although they yield re-
sults that differ somewhat in detail, the major conclusions
are essentially the same.

Vitkalov et al. [20] have obtained an excellent collapse
of magnetoconductivity data over a broad range of
electron densities and temperatures using a single scal-
ing parameter. Here the magnetoconductivity was



M.P. Sarachik and S.V. Kravchenko: Novel phenomena in dilute electron systems in two dimensions

B (tesla)
0 10
50 L A

conductivity (e*/h)
3] w o
S (=} (=}

o

(b)

o
o
T

N
i
T

(0(0)-0(B))/(6(0)-0(=))

(0(0)-o(B))/(0(0)-0(=))

0 0.5 1 1.5 2 2.5
B/B

Fig. 3. (a) Conductivity of a low~disordered silicon sample
versus in-plane magnetic field at different electron densities in
units of 10" ecm™2, as labeled; T = 100 mK. (b) Data col-
lapse obtained by applying the scaling procedure described
in the text to the curves shown in (a). (¢) Data collapse
obtained by applying the scaling procedure to the magne-
toconductivity at different temperatures for electron density
ns = 9.4 x 10'° cm 2.

separated into a  field-dependent  contribution,
(o0(B)) — 0(00)), and a contribution that is independent
of magnetic field, o(c0). The field-dependent contribution
to the conductivity, (o(0) — o(B))), normalized to its
full value, (c(0) — o(c0)), was shown to be a universal
function of B/B,:

0'(0) — O'(B”)

o(0) — o) L BI/B) o

where B, (ns,T) is the scaling parameter. Applied to the
magnetoconductance curves shown in Figure 3a for differ-
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Fig. 4. (a) B, versus temperature for different electron-
densities; the solid lines are fits to the empirical expression
B,(ns,T) = A(ns)[[A(ns)]? + T?]Y2. (b) The parameter A
as a function of electron density; the solid line is a fit to the
critical form A = Ag(ns — no)“.

ent electron densities above the metal-insulator transition,
this procedure yields the data collapse shown in Figure 3b.
Scaling also holds for the magnetoconductance at differ-
ent temperatures, as illustrated in Figure 3c. The scaling
holds for temperatures up to 1.6 K over a broad range of
electron densities up to 4 n..

Figure 4a shows the scaling parameter B, plotted as
a function of temperature for different electron densities
ns > n¢. For a given density, B, decreases as the tempera-
ture decreases and approaches a value that is independent
of temperature, B, (T = 0). As the density is reduced to-
ward n., the temperature dependence of B, dominates
over a broader range and becomes stronger, and the low-
temperature asymptotic value becomes smaller. Note that
for electron densities below 1.36 x 10! cm =2, B, is approx-
imately linear with temperature at high T'. The behavior
of the scaling parameter B,(T') can be approximated by
an empirical fitting function:

Bo(ns, T) = A(ny)[A(ny)? + T2V2.

The solid lines in Figure 4a are fits to this expression using
A(ns) and A(ns) as fitting parameters. As can be inferred
from the slopes of the curves of Figure 4a, the param-
eter A(ny) is constant over most of the range and then
exhibits a small increase (less than 20%) at lower densi-
ties. As shown in Figure 4b, the parameter A decreases
sharply with decreasing density and extrapolates to zero
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at a density ng that is within 10% of the critical density
ne ~ 0.85 x 10! em~2 for the metal-insulator transition.

Using a different procedure, Shashkin et al. [21] scaled
the magnetoresistivity in the spirit of the theory of
Dolgopolov and Gold [22], who predicted that at T = 0
the normalized magnetoresistance is a universal function
of the degree of spin polarization, { = g*upB)/2Er =
g*m*upB)/mh?n, (here m* is the effective mass and g*
is the g-factor). Using data at very low temperatures,
where the magnetoresistance is temperature-independent
and has reached its zero-temperature limit, these authors
obtained a collapse of the normalized magnetoresistance,
p(By)/p(0) as a function of B)/B. (here B, is the scaling
parameter normalized to correspond to the magnetic field
Bgat at which the magnetoresistance saturates).

This is illustrated in Figure 5a, which shows the nor-
malized magnetoresistance measured at different electron
densities versus B)/B.. The scaling is of high quality for
By/B. < 0.7 in the electron density range 1.08 x 10 to
10 x 10" em™2 and breaks down as one approaches the
metal-insulator transition, where the magnetoresistance
becomes strongly temperature-dependent even at the low-
est experimentally achievable temperatures. As shown in
Figure 6, the scaling parameter B, x (ns;—n,.) over a wide
range of densities.

The two procedures yield very similar results. The scal-
ing parameters A of Vitkalov et al. [20] and B, of Shashkin
et al. [21] represent energy scales kg A and upB,, respec-
tively, which vanish at or near the critical electron density
for the metal-insulator transition. At high electron densi-
ties and low temperatures T' < upB./kp (corresponding
to T < A), the system is in the zero temperature limit. As
one approaches n., progressively lower temperatures are
required to reach the zero temperature limit. At ng = ny,
the energies up B and kp A vanish; the parameter B, — 0
as T — 0; the system thus exhibits critical behavior [23],
signaling the approach to a new phase in the limit 7" =0
at a critical density ng = nc.

The data obtained in these experiments provide in-
formation from which the spin susceptibility, x, can be
calculated in a wide range of densities. In the clean limit,
the band tails can be neglected [18,24], and the magnetic
field required to fully polarize the spins is given by the
equation g*upB. = 2Er = wh?n,/m* (here, the two-fold
valley degeneracy in silicon has been taken into account).
Therefore, the spin susceptibility, normalized by its “non-
interacting” value, is

X g m* mhng
Xo gomw  2pupBemy’

The above expression yields the normalized spin
susceptibility [21] and its inverse [20] shown in Fig-
ure 7. The values deduced by both groups indicate that
g*m* diverges ((g*m*)~! extrapolates to zero) in silicon
MOSFETS at a finite density close or equal to n.. Also
shown on the same figure are the data of Pudalov et al. [25]
obtained from an analysis of Shubnikov-de Haas (SdH)
measurements in crossed magnetic fields. The susceptibil-
ities obtained by all three groups on different samples,
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by different methods and in different ranges of mag-
netic field, are remarkably similar (on the mutual consis-
tency of the data obtained on different samples by dif-
ferent groups, see also Sarachik and Vitkalov [18] and
Kravchenko et al. [26]).

The increase of the spin susceptibility could be due
to an enhancement of either g* or m* (or both). Shashkin
et al. [27] have obtained ¢g* and m* separately by analyzing
the temperature dependence of the conductivity in zero
magnetic field using the recent theory of Zala et al. [19].
Values of g* /gy and m*/m; determined from their analy-
sis are shown as a function of the electron density in Fig-
ure 8. In the high ng region (relatively weak interactions),
the enhancement of both g and m is relatively small, both
values increasing slightly with decreasing electron density
in agreement with earlier data [28]. Also, the renormaliza-
tion of the g-factor is dominant compared to that of the
effective mass, consistent with theoretical studies [29-31].
In contrast, the renormalization at low ns (near the critical
region), where rs > 1, is striking. As the electron density
is decreased, the renormalization of the effective mass in-
creases markedly with decreasing density while the g fac-
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to the eye.

tor remains relatively constant. Hence, this analysis indi-
cates that it is the effective mass, rather than the g-factor,
that is responsible for the strongly enhanced spin suscep-
tibility near the metal-insulator transition. This conclu-
sions was verified by Shashkin et al. in reference [34], who
determined the effective mass through an analysis of the
temperature dependence of the SAH oscillations similar to
the analysis done by Smith and Stiles [32] and Pudalov
et al. [33]. By introducing a parallel magnetic field com-
ponent to align the electrons’ spins, Shashkin et al. [34]
further demonstrated that the effective mass does not de-
pend on the degree of spin polarization, so that the mass
enhancement has no relation to the electrons’ spins and
exchange effects.

As discussed earlier, the divergence of the susceptibil-
ity x o g*m™* at a finite density indicates that the system
is approaching a quantum phase transition to a new low-
density phase. This is also supported by experiments that
report a diverging compressibility [35] at or near the crit-
ical density that signals a transition between metallic and
insulating behavior. The divergence of the susceptibility
is associated with a diverging effective mass m*, similar
to the effective mass divergence that occurs in the He-3
system [36]. The nature of the low density phase in sil-
icon MOSFETs is not clear at this point. The effective
mass divergence could signal localization due to a Mott-
type transition, or a precursor to Wigner crystallization,
or perhaps a charge density wave transition. Substantial
progress is being made that may soon lead to a better
understanding of the interesting behavior of strongly in-
teracting electron systems in two dimensions.
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